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This work is part of an investigation dealing with the effect of external flow in a melt 
on dendritic growth. In this paper, we will consider steady growth with zero surface 
tension. Assuming that the Prandtl number Pr is large, we are able to obtain a 
uniformly valid asymptotic solution for the steady state in the whole growth region. 

1. Introduction 
The interaction of convection and dendritic growth has been a subject of great 

interest in the area of materials science in recent years. The experimental observations 
have shown that convective motion in liquid may have a significant effect on dendritic 
growth. The existence of the convection may significantly change the growth velocity 
of the tip and the micro-structure pattern. The preliminary investigations of dendrite 
growth with convection are usually focused on the special case of zero surface tension. 
The solution for this special case, as the Ivantsov (1947) solution for dendrite growth 
with no convection, cannot resolve the problems of the selection of the tip velocity of 
dendrite and the dynamics of pattern formation on the interface. However, this 
solution is expected to provide a basis of further investigations on the general case of 
dendrite growth with non-zero surface tension. 

In the past few years, theoretical studies of the steady dendrite growth in an external 
flow have been conducted by a number of authors, including Ananth & Gill (1989, 
1991), Benamar, Bouisson & Pelce (1988), Saville & Beaghton (1988), and also Dash 
& Gill (1984), Ben Amar et al. (1988), Bouissou & Pelce (1989), Saville & Beaghton 
(1988), McFadden & Coriell (1986), Ananth & Gill (1989, 1991), Canright & Davis 
(1990) numerically and analytically. These authors considered the special case of zero 
surface tension, and obtained similarity solutions for the problem by use of some 
simplifying models : Stokes flow model, Oseen flow model, etc. When the Navier-Stokes 
equations are adopted, the similarity solutions may still be considered as the 
approximate solutions in the limiting case Pr + 00. However, as we know, only in the 
near field can the Stokes model be considered a good approximation to the 
Navier-Stokes model, whereas only in the far field is the Oseen model a good 
approximation to the Navier-Stokes model. Therefore, their similarity solutions 
cannot be considered good approximations in the whole physical space, as far as the 
Navier-Stokes model is concerned. In other words, for the problem with Navier-Stokes 
equations, these authors’ analytical solutions cannot be used as the first part of a 
uniformly valid asymptotic expansion solution. Moreover, the approaches adopted by 
these authors do not allow the generation of the next-order approximations, nor give 
an estimation of the error between their solutions and the exact solutions. 
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Our project attempts to investigate the effect of convection motion induced by 
external flow on dendrite growth, based on the Navier-Stokes model. We wish to find 
uniformly valid asymptotic solutions for the problem. In the present paper, we restrict 
ourselves to the case of steady dendrite growth with zero surface tension. On the basis 
of this steady-state solution, we shall, in a future paper, study the unsteady perturbed 
state with isotropic surface tension, explore the effect of convective motion on the 
global instability mechanism and resolve the problems of the selection of tip velocity 
and pattern formation in solidification. 

Evidently, with the inclusion of convective motion induced by the external flow, the 
system becomes more complicated. Our study shows that even for the special case of 
zero surface tension, the system no longer allows an exact similarity solution. (This 
conclusion has been also drawn by Ananth & Gill 1991 in terms of a different 
approach.) However, when the Prandtl number Pr is large, the system does allow a 
nearly similar solution with the error of O(I/(Prln Pr)). This nearly similar solution 
differs from the classic Ivantsov solution, with the correction terms proportional to the 
parameter 8,. The parameter 8,, is a function of the Prandtl number Pr, flow parameter 
U ,  and undercooling T,. It tends to zero as Pr+  00 or U ,  + O .  

The present paper is arranged as follows. In $2, we present the mathematical 
formulation of the problem; in $ 3 ,  we obtain the zeroth-order inner asymptotic 
expansion solution as Pr-t 00 ; in $4, we derive the outer asymptotic expansion 
solutions in the outer region; in $ 5 ,  we derive the higher-order asymptotic solutions, 
and match the inner solutions with the outer solutions; in $ 6 ,  we derive the asymptotic 
expansion solutions for the temperature field and the interface shape; finally, in $7, we 
summarize the results and draw some conclusions. 

2. Mathematical formulation of the problem 
Consider a single dendrite growing into an undercooled pure melt in the negative z- 

direction with a constant average velocity U as shown in figure 1. We assume that in 
the far field ahead of dendrite, the melt flows along the z-direction with a constant 
velocity (U,),. Both the growth velocity U and the flow velocity ( are measured 
in the laboratory frame. For simplicity, we assume that the density p and the other 
thermal characteristic constants of the solid phase, such as thermal diffusivity K ,  and 
the specific heat c p ,  are the same as the corresponding quantities of the liquid phase. 
Gravity is taken to be negligible, the surface tension is assumed isotropic, so then the 
dendrite is axisymmetrical; and no convective motion in the system is induced by any 
source other than the external flow. We utilize the thermal length 1, = K,/U as the 
lengthscale, lT /U  as the timescale and AH/(c ,p )  as the temperature scale, where AH 
is the latent heat per unit volume of the solid. Evidently, the convective motion in the 
melt will affect the heat transport process and change the temperature distribution. 

We use a moving paraboloidal coordinate system (t, 7,O) fixed at the dendrite tip, 
which is defined, in terms of the cylindrical coordinate system (r, z, O ) ,  as follows (see 
figure 2): 

r/7: = t7,  47: = gt2 - r”, (2- 1) 

and O is the azimuthal angle. In (2. l), the parameter 7: is introduced to normalize the 
interface shape function. For any given undercooling T,, we can properly choose q:, 
such that the basic Ivantsov solution has the interface shape 7* = 1. It is evident that 
the parameter 7; is just the PCclet number in Ivantsov’s solution. Let { V( t ,  r ,  t )  and 
&(t, 7, t)} represent the absolute velocity field in the liquid state and the solid state, 
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FIGURE 1. A typical dendrite growing from a supersaturated solution. 

A j  
I 

\ 

FIGURE 2. The paraboloidal coordinate system used in the present paper. 

respectively. Let V = (u, zi, w), and (u, w)  denote the component of the absolute velocity 
along the 5- and ?-directions, respectively, in the moving frame at the instant t. 
Furthermore, let ~~(6, t )  denote the interface shape function; Q = (0, 02, 0) = V x V 
denote the vorticity; Y(6,7, t )  denote the stream function; and T and T, denote the 
temperature field in the melt and in the solid state, respectively. The subscript S refers 
to the solid state. The melt is considered an incompressible Newtonian fluid. The 
governing equations for the dendritic growth process consist of the fluid dynamical 
equations and the heat conduction equation. We use the stream function Y(6, 7, t )  and 
the vorticity 0 = (0, o2 = </:/so" (7,O) as the basic hydrodynamical quantities. Thus, 
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and the non-dimensional governing equations can be written in the following forms : 

kinematic equation 

vorticity equation 
D2 !P = 7:(t2 + 72) 6; 

heat conduction equation 

Here, the differentiation operators V2 and D2 are defined as 

The boundary conditions are : 

= 0; T, = O(1); at 
the interface condition at 7 = ys(t, t), given as follows: 

thermo-dynamical equilibrium condition 

Gibbs-Thomson condition 
T =  T,; 

where the curvature operator 

enthalpy conservation condition 

mass conservation condition 

(2.15) 
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continuity condition of the tangential component of velocity 

(2.16) 

In the above, the prime represents the derivative with respect to <; the surface tension 

r = &/1!r, (2.17) 
parameter r is defined as 

(2.18) 

where y is the surface tension, TMo is the melting temperature at the flat interface and 
1, is the capillary length; the undercooling parameter T, is defined as 

while the parameter 

(2.19) 

(2.20) 

which measures the strength of the external flow. The Prandtl number, Pr, is defined 
as 

which is equivalent to the inverse of the Reynolds number Re = Ul,/v based on the tip 
velocity U and the thermal length 1,. 

Pr = v / K ~ ,  (2.21) 

3. Zeroth-order inner solution for the steady state 

tension. Thus, in (2.2)-(2.16), the surface tension parameter r = 0, and ?)/at = 0. 

a particular solution of (2.2)-(2.5) : 

In this paper, we shall study the steady state of dendrite growth with zero surface 

It is noticed that the following Ivantsov similarity solution with no external flow is 

T* = T, + b ebEl(by2), T,, = 0, 
(3.1) r* = 1, 5* = 0, u/, = +?l: t2V2, 

where E,(x) is the exponential function (see Abramovitz & Stegun 1964), and 

(3.2) - T, = b ebEl(b2), b = 2yo. 1 2  

It is seen that the parameter 7; is now determined by the undercooling T,. We 
assume that the Prandtl number of the system, Pr, is very large. Thus, for any fixed 
(5, q)  as Pr --f 00 we can make the following asymptotic expansions: 

(3.3) 1 P(5, r )  = ul, + ~ , ( W  Yo(5, 7) +A@) Yl(& 7) + . . . 5  

!XL 11) = 5, + do(Pr) Co(k ,  7) + 4 ( P r )  51& 7) + . * .  3 

a, 7) = T* + A O ( W  &t5> 7) + d,(Pr)  Tt5, 7) + . . . > 

Gt52 7) = T , * A O ( W  Go(& a) + d , ( W  Ts,(k>T)  + . . . > 

qS = 1 +do(Pr)Izo+dl(Pr)hl+..., 
where do(Pr), d,(Pr), . . . are asymptotic sequences to be determined. However, it will be 
seen that the above types of expansion cannot satisfy the fluid dynamic conditions in 
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the far field, although they can satisfy all conditions at the interface. Thus, in order to 
solve the problem under investigation, it is necessary for us to use the matched 
asymptotic expansion method, by which the whole physical space is divided into the 
inner region near the interface and the outer region in the far field. The solution has 
different asymptotic expansion forms in the different regions. The inner and outer 
asymptotic expansion solutions must be solved first, and then be matched in the 
intermediate region. 

In the following sections, we shall follow this procedure. The expansion (3.3) is just 
the inner expansion form. In order to obtain the inner solution, we substitute the above 
expansions into (2.1)-(2.5). Then, we can derive each order of inner expansion 
solutions successively. In this section, we attempt to derive the zeroth order inner 
expansion solution d,(Pv) Yo([, 11). 

The zeroth-order inner solution is subject to the following equations : 

D2yu, = -7 : (F  +y2) en7 

D2<, = 0, 

with the boundary conditions : 

a s 7 + a ,  T,>co+-o; 
as y+O, T, = O(1); 

on the interface 7 = 1 : 
T, = - T i (  1) h, = 7: h,, 

a 
- Yo([, 1) = 0. 
a11 

(3.4) 
(3.5) 

(3.6) 

(3.7) 
(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

To solve the above system (3.4)-(3.12), one must first obtain the velocity field from 
(3.4) and (3.5) with the boundary conditions (3.11) and (3.12); then obtain the 
temperature field and the interface shape from (3.6) and the boundary conditions 
(3.7)-(3.10). To solve (Yo, en), it is convenient to utilize a set of new variables defined 
as follows: 

g = L  2,$lo 2 c 2  7 = A  2110 7 2. (3.13) 

By using the variables (a;7), the operator D2 becomes 

D2 = 27;L, (3.14) 

where (3.15) 

Thus, we obtain L[@ol = - (g + 7) c o 2  (3.16) 

L"01 = 0. (3.17) 

In general, (3.16) and (3.17) allow the following form of the solutions co and Y, : 

= g " f , ( ~ )  + g@-')fn-,(7) + . . . + f o ( 7 ) ,  

yo = go(7) + ggI(7) +. . . + gngn(7), 

(3.18) 
(3.19) 
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wheref,(.r), gi (7)  (i  = 0 ,  1,2, . . . , n)  are polynomials of 7. However, it is verified that for 
the zeroth-order inner solution, one only need to take n = 1. By substituting (3.18) and 
(3.19) into (3.16) and (3.17), we obtain the solution 

6 = an, I 
a, 7' (3.20) 

Y, = - (-+ d, 7+d2 + CT[ -a, 7 In 7 +(a, + d,) 7 +  d,]. 2 

The boundary conditions (3.11) and (3.12) determine the arbitrary constants (4, d,, d,, 
d,} in (3.20) in terms of a,. Consequently, we derive the inner solution 

yo(& 7) = a0 $(g> 71, (3.21) 
$ = - (&2 -iv; 7 +is:) + CT[ - 7 In 7 + 7( 1 + 1n;v;) -;73 where 

= -$7:{i74 -y2 ++- t2[ -7' In y' + T ~  - 11). (3.22) 

The above solution contains an arbitrary constant a,. As we pointed out before, this 
solution satisfies all the boundary conditions at the interface. It, however, cannot 
satisfy the far-field condition as 7 + a. It is for this reason that we call this solution 
the inner solution. In the far field, the inner expansion solution is not valid; the steady- 
state solution has a different asymptotic expansion, which we call the outer expansion 
solution. The inner expansion solution and the outer expansion solution, of course, 
must match with each other in the intermediate region. The gauge function d,(Pr) and 
the arbitrary constant a, in the inner solution Yo will be determined by the matching 
condition (see Kevorkian & Cole 1981). Therefore, it will be seen later that the zeroth- 
order inner solution will be affected by the far-field condition through the constant a,. 

4. Outer expansion solution 

for the system (2.2)-(2.16). We introduce the following outer variables (&, 7.J: 
Now, we turn to the study of the outer asymptotic expansion solutions in the far field 

6, = c/Pr+ v* = ~ I P T ~ ,  (4.11 
and make the following outer asymptotic expansion for fixed (&, 7*) and in the limit 
as Pr+ co: 

(4.2) 

(4.3) 

I ~ ( t ,  7) = v* + P , ( P ~ )  in ( [ ,  7) + P I ( P ~ >  i i ( t 9  7) + . . . , 

CL + pn(Pr> t n ( L  7) + i.i(pr) ti([? 7) + . . 1 
~ ( k - 2  7) = 

RL 7 )  = T* + Pn(Pr> G ( k - 9  7) + P I ( P ~ >  q ( k - 3  7) + . . . . 
In terms of the outer variables, (2.3)-(2.4) are transformed to the form 

2 4  2 D: @ = p r  7o(t* + 7;) C 

The boundary conditions as 7* + co are 
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or 

To derive the outer expansion solutions, it is more convenient to use the following set 
of variables : 

(4.7) 1 2 2  1 2  2 
a* = 5 7 0  5*. 7* = 370 r*. 

In what follows, we shall derive the outer expansion solutions of the first few orders, 
successively. 

O&,(Pr)) : zeroth-order outer solution po(Pr) Yo(&, r+) 
To satisfy the far-field condition (4.5) as y*-f co, we must set 

p0(Pr) = Pr2 (4.8) 

and have @&*> r*> rz ;r: urn <; 7; as r* + a. (4.9) 
It is very easy to verify that the zeroth-order outer expansion solution is simply 

" 

YO(<*> s*> = ;?I: urn <; rf = 2urn a* 7*> 

to(&*> r*) = 07 

(4.10) 
(4.1 1) 

which represents a uniform flow with velocity U,. 
The first matching problem is how to determine the zeroth inner solution Yo, which 

can match with the outer uniform flow solution Yo in the intermediate region. For this 
purpose, we rewrite the inner solution Yo in terms the outer variables a,, 7*. Thus, we 
have 

do(&) Yo(g, 7) = - a,[do(Pr) Pr2 In Pr] a* 7* 

+ a,[d,(Pr) Pr2] { - a* 7* In 7* -&: + [ 1 + In f7$] a* 7*} 

- a,;s:[d,(Pr) Prl (a* - 7*) - a0 ;r:[do(Wl. (4.12) 

It is seen that the zeroth-order inner solution d,(Pr) !Po consists of four parts in the 
right-hand side of (4.12). In order for the first part of the inner solution d,(Prj Yo to 
match with the outer solution Pr2Yo, we must set 

d,(Pr) = l/lnPr, a, = -2U,. (4.13) 

Furthermore, the other three parts of the inner solution d,(Pr)  Yo must match with the 
higher-order outer solutions : 

(4.14) 

Specifically, in order for the second part of the inner solution d,(Pr)  Yo to match 
h(Pr) @ 1 ( ~ * , 7 * ) + , % ( ~ ~ )  @2(fl*,7*)+&(Pr) @3(q*77* )  + 

with the outer solution pl (Pr)  Yl, we must set 

d,(Pr) Pr2 = pl(Pr)  or pl(Pr)  = Pr2/ln Pr, (4.15) 

whereas in order for the third and fourth part of the inner solution d,(Pr) !Po to match 
with the outer solution p2(Pr) Y2 and p3(Pr)  F3 respectively, we must set 

p2(Pr)  = Pr/ln Pr, 
p3(Pr) = 1 /In Pr 

and derive r;, = ;urn r; (a* + 7*), 

Y3 = ;us 7;. 
1 

In the following, we shall derive the outer solutions Yl. 

(4.16) 
(4.17) 

(4.18) 

(4.19) 
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O&,(Pr)) : theJirst-order outer solution el 
The first-order solution is subject to the following equations : 

Di  $1 = -7xr i  +7 i )  (1, (4.20) 

where the differentiation operators D; are defined as 

By using the variables (a* ; 7*), the operator Di  becomes 

D i  = 27,2L, 

where 

Thus, we derive L*[@Il = -(a* + 7*) tl, 
L*[C1] = -(I + U,) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

In general, the above system of equations allows the following type of solution for tl 
and @l: 

= fl$4,(7*) + a?-') &-1(7*) + . . . + &(7*), (4.27) 
Yl = a$ G,(7*) + a* G,-1(7*) + . . . + G0(7*), (4.28) 

where 4(7*), Gi(7,)(i = 0,1,2,. . . , n) are some special functions of 7*. However, it will 
be seen that to match with the zeroth-order inner solution, one only need to take 
n = 0. By substituting (4.27) and (4.28) into (4.25) and (4.26), we obtain the solutions 

(4.29) 

(4.30) 

where (A,,, A,, A,, C,) are arbitrary constants. Obviously, (4.30) satisfy the far-field 
condition : 

(4.3 1)  

In order for the outer solution to match with the inner solution, we need to expand 
the outer solution in the limit: 7* + 0. In terms of the following formula 

e-" = 1 -x++x2.. . , 1 as x - to ,  E,(x) = 1 +(yo - 1) x + xln x + . . . , ,I (4.32) 

where the Euler constant 
yo = 0.57721 ..., (4.33) 
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A ,  + A ,  7* + A 2  o-* + A 2  o-* -___ l+U,  Cl (g* -.*I]} 

It is seen that the outer solution Yl(c*, T*) consists of three parts. In order for the first 
part to match with the second part of the inner solution d,(Pr) !P,((T,~), we must set 

Therefore, we derive the outer solution : 

where 

(4.36) 

(4.37) 

There are still two parts in the outer solution p1 Y17 which remain unmatched. In order 
to match this remainder we need to find the higher-order inner solutions. This will be 
done in the next section. 

5. Higher-order inner solutions and matching 

order inner solutions : 
In order to match the second part of the outer solution p1 Yl, we need to find higher- 

d,(Pr)  Y1(g, 7 )  + d,(Pr) Y2(a, T )  + . . . , (5.1) 

which satisfy the following far-field conditions, respectively : 

Therefore, we must set 

1 A,(Pr) = 
1 d,(Pr) = ____ PrlnPr '  Pr2 In Pr ' "" 

(5.4) 

In the present paper, we shall not derive these higher-order inner solutions. 
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we need to find 
a higher-order inner solution &)(Pr) Pt)(c, 7) ,  which satisfies the far-field condition : 

Finally, in order to match the third part of the outer solution ,ul 

(5.5) 

where A = (yo- 1 +lni[rf( l+ U,)]). (5.6) 
This problem turns out to be the same as the one we solved before for the inner solution 
do(Pr)  Yo(g, 7 ) .  Hence, we can write 

1 dF)(Pr)  = ___ 
(In Pr)" (5.7) 

Again, the inner solution d r ) ( P r )  Y:)(a, r )  will induce another outer solution 
py)(Pr)A@)(a*,  r*) as the inner solution do(Pr)  Yo(a, 7 )  induced the outer solution 
,uul(Pr) Yl(a*, r*). Hence, we can also write 

Yg)(t, 7) = - 2U,  A@(a, 7 ) .  

This matching procedure will be repeated infinitely. In this manner, we eventually 
derive the following inner expansion solution : 

@(t, 7) - 1 4  2 2um -%rot - 
7 x 1  + urn> 

2Pr 
In + l - Y o  

1 1 +- YI(L 7) + pr2 In pr YZ(t> ?;I) + Pr In Pr 

Similarly, we derive the outer expansion solution : 

@(t, 7) = 2pr27x1+ urn> t: ?;I; 

(5.9) 

(5.10) 
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6. Asymptotic solution for temperature field and interface shape 
We now derive the asymptotic expansion solutions for the temperature field T(t7 7) 

and the interface shape s,(LJ. According to the inner expansion solution (5.9), we write 
the following expansions : 

In the following, we shall derive the zeroth-order expansion solutions (6,(Pr) T,(& y)), 
where we set 

(6.3) 6,(Pr) = 2um 
2Pr 

The zeroth-order expansion solution 6,(Pr) q(t, 7) is subject to the following equation: 

(6.4) 

with the boundary conditions : 
the far-field condition 

asr+oo & + O ;  
the interface condition at 7 = 1 : 

T,(& 1) = 73% 

It has already been derived that 

Therefore, we may assume that the solution T, only depends on the variable y7 namely 
T, = T,(v) : while h, is just a constant. Consequently, we derive the governing equation 

4 

T;(T) + (t + 7; 7) Ti(7) = ehi(1-72) f ( 7 )  (6.9) 

with the boundary conditions : 
(6.10) 

(6.11) 
(6.12) 



Dendritic growth from a melt in an external f low 239 

This free boundary problem can be easily solved. The solution is as follows: 

where 

(6.13) 

(6.14) 

Finally, we obtain the asymptotic expansion solutions for the temperature field and the 
interface shape as follows : 

It should be pointed out that the solution (6.16) and (6.17) is a uniformly valid 
asymptotic expansion solution in the whole region. It satisfies both the interface 
condition and the far-field condition. Therefore we do not need to look for the outer 
solution for the temperature field in the outer region. In order to make the outer 
expansion for the temperature field, it can be shown that this outer expansion will be 
T, plus some exponentially small term as Pr + co. 

From the above solutions (6.16) and (6.17), one sees that the steady-state solution 
of dendrite growth with external flow can never be a similarity solution. This 
conclusion has also been drawn by Ananth & Gill through a different approach. 
However, if one neglects all terms of O( 1/Pr In Pr), the shape of the dendrite will be a 
paraboloid of revolution, while the temperature field will be described by a similarity 
type of solution, just like in the case of dendrite growth with no external flow. Thus, 
when the surface tension equals zero and the Prandtl number is large, we can consider 
the steady-state solution of dendritic growth with external flow as nearly a similarity 
solution, which can be approximated by the similarity solution { T',(s), ye} : 

(6.18) 
(6.19) 

From here, we can deduce that for a given undercooling T,, the steady solution of 
dendrite growth with the inclusion of external flow is different from the classical 
lvantsov solution in two aspects: 
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FIGURE 3 .  The variation of the function H,,(a;) with the parameter rf 

(i) the interface shape is changed from the paraboloid qS = 1 to the paraboloid 

7 s  = V B  = 1 +S,H,(.j:), (6.20) 

8, = 2u, (6.21) 

where we have defined that 

2Pr 
In [ 7;( 1 + U J  + 1 - yo ' 

this change will affect the tip radius and the tip velocity of the dendrite; 
(ii) the temperature gradient at the interfae is changed from Ti(1) = -7: to 

Tk(7B) Ti(1) + T:(~)(TB- 1) + Sn(Pr) Th(1) 
= - d [ l +  So Hn(73I; 

this change will affect the instability mechanism of the dendrite interface. 
The function H,(7:) is plotted in figure 3 versus 7:. It is shown that as 

(6.22) 

7: + 0, H n ( 7 3  + i; 
while as v i +  00, H,(7:) - -+a:. It is seen that as long as 7: < 3, one always has 
0.5 d IH,I < 1. The parameter 6, is a function of the parameters U,, & and Pr. In 
figure 4, we show the variation of S, with Pr for two cases: (a)  U ,  = 0.5, 7 ;  = 0.1; (b) 

Moreover, from (6.18) and (6.19) one see that the nearly similarity solution is, 
actually, a modified Ivantsov solution with the correction terms proportional to the 
parameter 6,, caused by the external flow. When the parameter 6, is small, the 
similarity solution (6.18) and (6.19) will be close to the Ivantsov solution. This will be 
the case, as the flow parameter U ,  is less than unity. However, when the flow 
parameter U ,  is large, the nearly similarity solution (6.18) and (6.19) will be far away 
from the Ivantsov solution. 

For a given T,, the growth Peclet number Pe defined as the ratio of the tip radius 
of the dendrite, fb and the thermal length, I, can be calculated as 

Pe  = 7; & = $[l+ 8, H0(7$]'. (6.23) 
For Pr = 13.5 and U ,  = 0,0.4,0.8, 1.2, 2.0, 5.0, we have calculated Pe  versus I T,I. The 
results are shown in figure 5. It is seen that for a fixed T,, the growth Peclet number 

u, = 0.1, sf = 0.2. 
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FIGURE 4. The variation of the parameter 8, with Pr for (a) U ,  = 0.1, rl: = 0.2; 
(b) U ,  = 0.5, v i  = 0.1. 
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FIGURE 5. The variation of the growth parameter Pe with T, for Pr = 13.5 and various flow 
parameters U ,  = 0, 0.4, 0.8, 1.2, 2.0, 5.0. 
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Pe increases with U,; while for a fixed U,, the Peclet number Pe monotonically 
increases with T,. 

The steady dendrite growth solution derived in the present paper, just like the 
Ivantsov solution, does not determine the tip velocity or explain the formation of 
micro-structure, since the surface tension in the system is neglected. The selection of the 
tip velocity and the formation of the pattern in dendritic growth with external flow is 
a subject of great significance both theoretically and practically. The solutions to these 
problems can be derived by using the same approach as we have developed in previous 
studies (see Xu 1990a-c, 1991, 1993). The results of our investigation will be published 
in a future paper. 

7. Summary 
In the present paper, we study steady dendrite growth from a melt in an external flow 

with zero surface tension at the interface. By use of a matched asymptotic expansion 
method, we obtain a uniformly valid asymptotic solution for the problem, as Pr --f 00. 

The problem has been studied by a number authors in terms of Oseen, Stokes, or 
potential flow approximations (see Dash & Gill 1984; Ben Amar et al. 1988; Bouisson 
& Pelce 1989; Saville & Beaghton 1988; McFadden & Coriell 1986; Ananth & Gill 
1989, 1991), but their solutions are not of asymptotic type. Hence, as Pr+co the 
analytical form of their solutions will not match to our solution. 

The problem involves the interaction of the flow field and the temperature field. As 
Pr+ co, the flow field is decoupled from the temperature field. The asymptotic 
solutions of the flow field can be solved first. Then the asymptotic solutions of the 
temperature field and the interface shape function are solved based on the solutions for 
the flow field. In solving the flow field, however, a singularity appears at the far field. 
Thus, the matched asymptotic expansion method is needed. The whole physical space 
is divided into an inner region near the interface of the dendrite and an outer region 
in the far field. In different regions, the solutions to the flow field have different 
asymptotic expansion forms. The inner expansion solutions in the inner region can 
satisfy all the boundary conditions at the interface, but cannot satisfy the flow 
condition at the far field, whereas the outer expansion solutions in the outer region can 
satisfy all boundary conditions at the far field, but cannot satisfy the boundary 
conditions at the interface. Therefore, it is necessary to match both solutions with each 
other in the intermediate region in deriving the uniformly valid asymptotic expansion 
solution to the problem. Our matched asymptotic solution is derived in the limit 
Pr +- co, so it can be applied to practical cases with any undercooling parameter T, and 
a large flow parameter. Although in figure 5 we only show numerical results in the 
range of U ,  up to 5,  it does not imply that the applicability of our solution has this 
limitation. 

The conclusions drawn in the present paper are summarized as follows: 
(i) With the inclusion of external flow, the system does not permit a similarity 

solution even for the special case of zero surface tension. However, when Pr  + co, the 
steady-state solution of dendrite growth is nearly a similarity solution. It can be 
approximated by the similarity solution TB($)rB with an error or O(l/PrlnPr), as 
described by (6.18) and (6.19). 

(ii) If we neglect the higher-order small terms of O(I/Prln Pr) due to the effect of 
convection, the interfae shape of the dendrite is changed to a paraboloid 7 = T~ > 1, 
from the Ivantsov paraboloid 7 = 1, corresponding to the case U,  = 0, while the 
gradient of temperature at the interface is also changed as shown by (6.22); 
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(iii) The correction terms in the nearly similarity solution caused by the external 
flow are proportional to the parameter a,, which is a function of Pr, U,, T,. As 
Pr-t GO or U,  +O, S,+O. Therefore, when the flow parameter U,  is small, the 
correction terms are small. However, when the flow parameter is large ( U ,  % l), the 
correction terms in the nearly similarity solution may be large. Hence, our solution 
may be quite different from the Ivantsov solution. 

(iv) For any given T,, the growth Peclet number Pe increases with the flow 
parameter U,. For a fixed U,, the PCclet number Pe increases monotonically with T,. 
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