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This work is part of an investigation dealing with the effect of external flow in a melt
on dendritic growth. In this paper, we will consider steady growth with zero surface
tension. Assuming that the Prandtl number Pr is large, we are able to obtain a
uniformly valid asymptotic solution for the steady state in the whole growth region.

1. Introduction

The interaction of convection and dendritic growth has been a subject of great
interest in the area of materials science in recent years. The experimental observations
have shown that convective motion in liquid may have a significant effect on dendritic
growth. The existence of the convection may significantly change the growth velocity
of the tip and the micro-structure pattern. The preliminary investigations of dendrite
growth with convection are usually focused on the special case of zero surface tension.
The solution for this special case, as the Ivantsov (1947) solution for dendrite growth
with no convection, cannot resolve the problems of the selection of the tip velocity of
dendrite and the dynamics of pattern formation on the interface. However, this
solution is expected to provide a basis of further investigations on the general case of
dendrite growth with non-zero surface tension.

In the past few years, theoretical studies of the steady dendrite growth in an external
flow have been conducted by a number of authors, including Ananth & Gill (1989,
1991), Benamar, Bouisson & Pelce (1988), Saville & Beaghton (1988), and also Dash
& Gill (1984), Ben Amar et al. (1988), Bouissou & Pelce (1989), Saville & Beaghton
(1988), McFadden & Coriell (1986), Ananth & Gill (1989, 1991), Canright & Davis
(1990) numerically and analytically. These authors considered the special case of zero
surface tension, and obtained similarity solutions for the problem by use of some
simplifying models: Stokes flow model, Oseen flow model, etc. When the Navier—Stokes
equations are adopted, the similarity solutions may still be considered as the
approximate solutions in the limiting case Pr— co. However, as we know, only in the
near field can the Stokes model be considered a good approximation to the
Navier—Stokes model, whereas only in the far field is the Oseen model a good
approximation to the Navier—Stokes model. Therefore, their similarity solutions
cannot be considered good approximations in the whole physical space, as far as the
Navier—Stokes model is concerned. In other words, for the problem with Navier-Stokes
equations, these authors’ analytical solutions cannot be used as the first part of a
uniformly valid asymptotic expansion solution. Moreover, the approaches adopted by
these authors do not allow the generation of the next-order approximations, nor give
an estimation of the error between their solutions and the exact solutions.
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Our project attempts to investigate the effect of convection motion induced by
external flow on dendrite growth, based on the Navier-Stokes model. We wish to find
uniformly valid asymptotic solutions for the problem. In the present paper, we restrict
ourselves to the case of steady dendrite growth with zero surface tension. On the basis
of this steady-state solution, we shall, in a future paper, study the unsteady perturbed
state with isotropic surface tension, explore the effect of convective motion on the
global instability mechanism and resolve the problems of the selection of tip velocity
and pattern formation in solidification.

Evidently, with the inclusion of convective motion induced by the external flow, the
system becomes more complicated. Our study shows that even for the special case of
zero surface tension, the system no longer allows an exact similarity solution. (This
conclusion has been also drawn by Ananth & Gill 1991 in terms of a different
approach.) However, when the Prandtl number Pr is large, the system does allow a
nearly similar solution with the error of O(1/(Prln Pr)). This nearly similar solution
differs from the classic Ivantsov solution, with the correction terms proportional to the
parameter &,. The parameter 4, is a function of the Prandtl number Pr, flow parameter
U, and undercooling T,,. It tends to zero as Pr— oo or U 0.

The present paper is arranged as follows. In §2, we present the mathematical
formulation of the problem; in §3, we obtain the zeroth-order inner asymptotic
expansion solution as Pr—>o0; in §4, we derive the outer asymptotic expansion
solutions in the outer region; in §5, we derive the higher-order asymptotic solutions,
and match the inner solutions with the outer solutions; in §6, we derive the asymptotic
expansion solutions for the temperature field and the interface shape; finally, in §7, we
summarize the results and draw some conclusions.

2. Mathematical formulation of the problem

Consider a single dendrite growing into an undercooled pure melt in the negative z-
direction with a constant average velocity U as shown in figure 1. We assume that in
the far field ahead of dendrite, the melt flows along the z-direction with a constant
velocity (U,),. Both the growth velocity U and the flow velocity (U,,), are measured
in the laboratory frame. For simplicity, we assume that the density p and the other
thermal characteristic constants of the solid phase, such as thermal diffusivity x, and
the specific heat ¢, are the same as the corresponding quantities of the liquid phase.
Gravity is taken to be negligible, the surface tension is assumed isotropic, so then the
dendrite is axisymmetrical; and no convective motion in the system is induced by any
source other than the external flow. We utilize the thermal length /, = x,/U as the
lengthscale, /,,/U as the timescale and AH/(c, p) as the temperature scale, where AH
is the latent heat per unit volume of the solid. Evidently, the convective motion in the
melt will affect the heat transport process and change the temperature distribution.

We use a moving paraboloidal coordinate system (£, 5, 6) fixed at the dendrite tip,
which is defined, in terms of the cylindrical coordinate system (r, z, &), as follows (see

figure 2):
rime=~E&n,  z/n5=3&—7Y), 2.D

and 6 is the azimuthal angle. In (2.1), the parameter #2 is introduced to normalize the
interface shape function. For any given undercooling T, we can properly choose 73,
such that the basic Ivantsov solution has the interface shape #, = 1. It is evident that
the parameter 7; is just the Péclet number in Ivantsov’s solution. Let {V(£,#,t) and
Vi€, n, )} represent the absolute velocity field in the liquid state and the solid state,
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F1GURE 2. The paraboloidal coordinate system used in the present paper.

respectively. Let V' = (u,v,w), and (4, w) denote the component of the absolute velocity
along the £- and #-directions, respectively, in the moving frame at the instant 1.
Furthermore, let » (£, t) denote the interface shape function; Q = (0,w,,0) = Vx V
denote the vorticity; ¥(£,,t) denote the stream function; and T and 7 denote the
temperature field in the melt and in the solid state, respectively. The subscript S refers
to the solid state. The melt is considered an incompressible Newtonian fluid. The
governing equations for the dendritic growth process consist of the fluid dynamical
equations and the heat conduction equation. We use the stream function ¥(&, 7, ¢) and
the vorticity £ = (0, w, = {/7%£n, 0) as the basic hydrodynamical quantities. Thus,

1 ov 1 oY
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and the non-dimensional governing equations can be written in the following forms:

kinematic equation
DY = my(€+7) &;
vorticity equation

20 AYmbn) 1 AP0,

PrD*¢ = (& +7 2)

heat conduction equation
1 [o¥oT o¥o
ViT = 2 | 2 ( oLty _T)
e+ a5y g o
Here, the differentiation operators V? and D? are defined as

vi_ {a2+_ai+1a+1a}
og* £OE oy

D? — {ff_+ o 12 1 a}
08 Op® EQE Oy

The boundary conditions are:

as 97— o,
Volpb1+U )% (>0, (oru—0; w——1),
T-T1_;
as -0,
oTy
s — o():

the interface condition at 5 = (&, ?), given as follows:
thermo-dynamical equilibrium condition

T=T;
Gibbs-Thomson condition

F dz
1y =~ Lk { G g e 0

where the curvature operator

o iyt &) pEn A&y’

(2.3)

2.4)

2.5)

(2.6)

2.7)

(2.8)
2.9)

(2.10)

(2.11)

(2.12)

K{dz d}” __ ! { oo 1 7ns +28) — &1
’ A+708 g (1+720 &E+9) L+

g dgf " (@

enthalpy conservation condition
oT .0 oT, 0T . 2
(an ma—g (677 — s ag)ﬂo(&;s) +75(6 +ns)
mass conservation condition

oY 0
(ag 7 ay,) = 15(Em) (€1,)’

}, (2.13)

(2.14)

(2.15)
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continuity condition of the tangential component of velocity

(ﬁ’_ ﬂ;%wé(ém)(m 7. —£) =0. (2.16)

on

In the above, the prime represents the derivative with respect to £; the surface tension
parameter I" is defined as

=1/, (2.17)
ly= 7;2";;? (2.18)

where vy is the surface tension, 7,,, is the melting temperature at the flat interface and
[, is the capillary length; the undercooling parameter T, is defined as

()
T, =—2=—, 2.19
AH/(c, p) @19)
while the parameter
Wl
=7 2.20
UCO U > ( )

which measures the strength of the external flow. The Prandtl number, Pr, is defined

as
Pr=v/kp, (2.21)

which is equivalent to the inverse of the Reynolds number Re = U/, /v based on the tip
velocity U and the thermal length /.

3. Zeroth-order inner solution for the steady state

In this paper, we shall study the steady state of dendrite growth with zero surface
tension. Thus, in (2.2)~(2.16), the surface tension parameter I' = 0, and 0/0t = 0.

It is noticed that the following Ivantsov similarity solution with no external flow is
a particular solution of (2.2)-(2.5):

T,=T,+be’E(by?), Ty, =0,

e =1, Lu=0, ¥,=E"
where E, (x) is the exponential function (see Abramovitz & Stegun 1964), and
—T, =be"E,(b»), b=1ip (3.2)

It is seen that the parameter #2 is now determined by the undercooling 7. We
assume that the Prandtl number of the system, Pr, is very large. Thus, for any fixed
(&,m) as Pr—>oo0 we can make the following asymptotic expansions:

P(En) = Vit dy(Pr) V&) + 4(PH P E )+,
8E ) = &+ 4y(Pr) &+ A4, (Pr) EE )+,
T(E,n) = T+ 4y(Pr) T(E, m) + 4,(Pr) TiE )+ .., (3.3)
T, 1) = Teaedo(Pr) Tso(&, )+ A, (Pr) Ty (E,p) + ...
s = 1+4(PrYhy+A4,(Pr)h +...,

where 4,(Pr), 4,(Pr), ... are asymptotic sequences to be determined. However, it will be
seen that the above types of expansion cannot satisfy the fluid dynamic conditions in

3.1
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the far field, although they can satisfy all conditions at the interface. Thus, in order to
solve the problem under investigation, it is necessary for us to use the matched
asymptotic expansion method, by which the whole physical space is divided into the
inner region near the interface and the outer region in the far field. The solution has
different asymptotic expansion forms in the different regions. The inner and outer
asymptotic expansion solutions must be solved first, and then be matched in the
intermediate region.

In the following sections, we shall follow this procedure. The expansion (3.3) is just
the inner expansion form. In order to obtain the inner solution, we substitute the above
expansions into (2.1)+(2.5). Then, we can derive each order of inner expansion
solutions successively. In this section, we attempt to derive the zeroth order inner
expansion solution 4,(Pr) ¥ (&, ).

The zeroth-order inner solution is subject to the following equations:

D*¥, = — (& + ) &, (3.4)
D2¢, =0, (3.5
ST R A Al 5o
" omebnl oy 9 0k oy Oy O O Oy )

with the boundary conditions:
asp—~>owo, T,0,—~0; 3.7
asy >0, To=O0(l); (3.8)

on the interface 5 = 1:

1y =—T, (1) hy = g hy, (3.9)

aa_?(g’ 1) = =T (1) hy—n5 he— g Eho(E) = — 952 +75) hy— 5 ERg(8),  (3.10)
Wo(g’ 1) = 09 (3‘11)

¢
5y L&D =0. (3.12)

To solve the above system (3.4)—(3.12), one must first obtain the velocity field from
(3.4) and (3.5) with the boundary conditions (3.11) and (3.12); then obtain the
temperature field and the interface shape from (3.6) and the boundary conditions
(3.7)(3.10). To solve (¥,, &), it is convenient to utilize a set of new variables defined
as follows:

o=g,& =7 (3.13)
By using the variables (o;7), the operator D? becomes
D% =241, (3.14)
a2 a2

where L= (05&—2+TW)' (3.15)
Thus, we obtain L) = —(c+1)E,, (3.16)
L[&] = 0. (3.17)

In general, (3.16) and (3.17) allow the following form of the solutions ¢, and ¥,:
& =af,()+ ™ Vf (1) +...+f (1), (3.18)

Y, =g, +og(D+...+0"g,(7), (3.19)
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where f(7), g,(1) (i = 0,1,2, ..., n) are polynomials of 7. However, it is verified that for
the zeroth-order inner solution, one only need to take n = 1. By substituting (3.18) and
(3.19) into (3.16) and (3.17), we obtain the solution

§0 =y,
(3.20)

2
Y, = —(aozT +d1T+d2)+0'[—a071n7'+(ao+d3)7'+d4].

The boundary conditions (3.11) and (3.12) determine the arbitrary constants {d,, d,, d,,
d,} in (3.20) in terms of a,. Consequently, we derive the inner solution

Y& 7)) = a, (o, 7), (3.21)
where U=—0Gr -7+ ) +ol—7InT+7(1+1niyd) —1p3]
= =G = =&y Ing? +9* 1]} (3.22)

The above solution contains an arbitrary constant a,. As we pointed out before, this
solution satisfies all the boundary conditions at the interface. It, however, cannot
satisfy the far-field condition as 5 — co. It is for this reason that we call this solution
the inner solution. In the far field, the inner expansion solution is not valid; the steady-
state solution has a different asymptotic expansion, which we call the outer expansion
solution. The inner expansion solution and the outer expansion solution, of course,
must match with each other in the intermediate region. The gauge function 4,(Pr) and
the arbitrary constant g, in the inner solution ¥, will be determined by the matching
condition (see Kevorkian & Cole 1981). Therefore, it will be seen later that the zeroth-
order inner solution will be affected by the far-field condition through the constant a,,.

4. Outer expansion solution

Now, we turn to the study of the outer asymptotic expansion solutions in the far field
for the system (2.2)(2.16). We introduce the following outer variables (£, 74):

Eu=E/Pr 4 =/ PP, @1

and make the following outer asymptotic expansion for fixed (&, 5,) and in the limit
as Pr—oo: . R
P& ) = Vatpu(Pr) V(&) + (P VL&) + ..,

LE1) = pslla (PO EE D +mPOEE D+, (“2)

T, 7) = To+poPr) TE ) + (P TE ...
In terms of the outer variables, (2.3)(2.4) are transformed to the form
D} ¥ = P& +ni & “3)
. 2l L2
2 — R R
D1~ e (5, 145,
1 (asff ol oY aé) 1 (aaff ol P AL

B 0Ly Oy My 0Ey)

Prong Cumy \0&4 Ony 014 04
The boundary conditions as 5, — oo are
Y(Exr ) = PrimU, £, (4.5)

Mo s N
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1 Y, 1 oY
A N oy 1 aa—~0
Mo & M O o & M O
To derive the outer expansion solutions, it is more convenient to use the following set
of variables:

(4.6)

or

re=WiE =T @7
In what follows, we shall derive the outer expansion solutions of the first few orders,
successively.

O(1so(Pr)): zeroth-order outer solution p(Pr) Sf’o(é*, M)
To satisfy the far-field condition (4.5) as #, — 00, we must set

puo(Pr) = Pr* (4.8)

and have Pyl i) R W U Eal a5 74> 00, (4.9)
It is very easy to verify that the zeroth-order outer expansion solution is simply

oo 14) = 15 Uns 6475 = 2U, 0 T, (4.10)

x> 1) = 0, (4.11)

which represents a uniform flow with velocity U_.

The first matching problem is how to determine the zeroth inner solution ¥, which
can match with the outer uniform flow solution ¥, in the intermediate region. For this
purpose, we rewrite the inner solution ¥, in terms the outer variables o, 7,. Thus, we
have

A(Pry ¥y (&,m) = —afd4,(Pr) PPPIn Prlo, T,
+a0[A0(Pr)Pr2]{—O’*T*lnT*—%’ri +[1 +1n%77(2)] O g T}
— o g5ldo(Pr) Prl (o4 —7.) —aygngl 4o(Pr)). (4.12)
It is seen that the zeroth-order inner solution 4,(Pr) ¥, consists of four parts in the
right-hand side of (4.12). In order for the first part of the inner solution 4,(Pr) ¥, to
match with the outer solution Pr*¥,, we must set

A4(Pr)=1/InPr, a,=-2U,. (4.13)

Furthermore, the other three parts of the inner solution 4,(Pr) ¥, must match with the
higher-order outer solutions:

(y(PrY V(0 s 7o)+ s PP) P04 T) + (PP W0, Ti) + .. 1. (4.14)

Specifically, in order for the second part of the inner solution 4,(Pr) ¥, to match
with the outer solution x,(Pr) ¥,, we must set

A,(Pr) Pr* = u,(Pr) or u,(Pr)= Pr*/InPr, (4.15)

whereas in order for the third and fourth part of the inner solution 4,(Pr) ¥, to match
with the outer solution u,(Pr) ¥, and pu,(Pr) ¥, respectively, we must set

1o(Pr) = Pr/ln Pr, (4.16)

4y(Pr) = 1/In Pr 4.17)

and derive P, = U _2(0u+Te)s (4.18)
¥, =3U_ 92 (4.19)

In the following, we shall derive the outer solutions Sf’l.
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O(u,(Pr)): the first-order outer solution Sf/l
The first-order solution is subject to the following equations:

D ¥, = — &+ &, (4.20)
. d 4
D1 =1+ Um0 -e ), @21)

where the differentiation operators D2 are defined as
o 13 10
Dt = { Lo ra 1 } (422
* agi 677* Ex08x  Mx Oy )

By using the variables (o,;7,), the operator D% becomes

D2 = 2p%L, (4.23)
0 o2
where L, - ( e ) (4.24)
Thus, we derive L% ]=—(o,+70)&, (4.25)
22 agl a€1
Lfdl = =1+ Uy 2= 252, .26)

In general, the above system of equations allows the following type of solution for fl
and ¥,: )
=0t E (1 )+ 00 VE, _ (1) +.. .+ E(1y), (4.27)

P, = 0l G (1) + 04 G (1) +... +Gy(T), (4.28)

where F(7,), G(7,)(i=10,1,2,...,n) are some special functions of 7,. However, it will
be seen that to match with the zeroth-order inner solution, one only need to take
n = 0. By substituting (4.27) and (4.28) into (4.25) and (4.26), we obtain the solutions

d ¢ = E(r,) = C,e 1V (4.29)
an

¥, = Gy(1)+ 0. Gy(7))
T 7 (1 + Uoo) Ty Ez((l + Uao) T*)],
(4.30)

where (4,, 4,,4,,C,) are arbitrary constants. Obviously, (4.30) satisfy the far-field
condition:

C
= A0+AIT* +A20'*—(T_+_—(>)—2[€

1 2P, o 1 a_affléo
TG L 0E MAEL 7 On,

In order for the outer solution to match with the inner solution, we need to expand
the outer solution in the limit: 7, —0. In terms of the following formula

(4.31)

e =1—-x+3x..., 1 0 42
Ez(x)=1+(y0—1)x+xlnx+...,J as x=b (4.32)

where the Euler constant
v =0.57721..., (4.33)
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we derive

Prry - pr?
(m> V(0gTy) = (ln Pr){ ~Cit+o e Int, —o 7, (1 +Ingpd)]

C
+{A0 +AIT* +A2 0'*+A2 U*—I—ﬁ—(o’*—T*)]}

Prz 3 4 2 3
+ E‘E {O(T*,T*,...,O'*T*,O'*T*,...,)}

Prt
o N Ra 1 (R N T
It is seen that the outer solution ¥,(o, 7,) consists of three parts. In order for the first
part to match with the second part of the inner solution 4,(Pr) ¥ (o, 7), we must set

2U 2U
= — = - "% A = — = — x . 4

o 2U,, A, aro b A, U, (4.35)

Therefore, we derive the outer solution:
- PrN 22U,

(P P (04, Te) = (l—m) A (T4, T)s (4.36)
e_(l+Uw) Te 1

where PO gsTy) = +Te+ 0 Ey(1+U )Ty — 0y (4.37)

1+0,

There are still two parts in the outer solution g, &f’l, which remain unmatched. In order
to match this remainder we need to find the higher-order inner solutions. This will be
done in the next section.

5. Higher-order inner solutions and matching

In order to match the second part of the outer solution g, Ef’l, we need to find higher-
order inner solutions:

A4,(Pr) ¥ (o, 1)+ 4,(Pr) (o, 1)+ ..., 6.D

which satisfy the following far-field conditions, respectively:

~ 1 2 3
A4,(Pr) ¥ (o, 1)~ PPy O(o7%, %), (5.2)
~ 1 3 4
4, (Pr)¥y(o, 1) = P Pr O(or’, 1), (5.3)
Therefore, we must set
AP = AP =t (5.4)
t T PrlnPr T? PP lnPr’ ’

In the present paper, we shall not derive these higher-order inner solutions.
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Finally, in order to match the third part of the outer solution u, Y., we need to find
a higher-order inner solution 4{’(Pr) ¥{" (o, 1), which satisfies the far-field condition:

ADPr) PV (o, 7) = Prt 2U Ao, T
0 0 ’ 11’1 PI‘ e} * f %
| (5.5)
(lnP )2U Ao,
where = (yo—1+Indy2(1+ U )D. (5.6)

This problem turns out to be the same as the one we solved before for the inner solution
A4,(Pr) ¥ (o, 7). Hence, we can write

1
(In Pr)¥
Again, the inner solution A{’(Pr)¥{’(s,7) will induce another outer solution

w3V (Pr) ?"1)(0-*,7*) as the inner solution 4,(Pr) ¥ (o, 7) induced the outer solution
#,(Pr) ' (04, 74). Hence, we can also write

AP (Pr) = PP ) = —2U,, AY(o,7). (5.7)

20U,

(1) }‘) (l P )2’ 1 (g*’ 77*) 1+ U

AP0 4, T)- (5.8)

This matching procedure will be repeated infinitely. In this manner, we eventually
derive the following inner expansion solution:

Y(E, ) = by £7° — 9”(5 )( (lnApr)+(B£1>7)2+”')

1 1
+PrlnP l(g 77)+ 21 P SU2(§977)+
20,
— 1 4 ©
ZWOg 2Pr I)b(g’/'])

n———+1-—
T Uy

e VE D+ g P ) (59

1 1
Pr Prin Pr Priin Pr

Similarly, we derive the outer expansion solution:

P(E, 1) = 2Prpi(1+ U,) 2 %

+12+UU 1+ (lnAP,)+(m—Alo;)2+"')

1
lnP !{’ (g*a 77*)+ 3(§*, 77*)+

22U, Pr*

2.4
= 2Pr 770(1+U )‘5*77* 1+len{ Pr ]+1— P (s Mx)
RA+ U T T
Pr 3
+h‘1P U 770(0-*“"7*)"‘1 Pr iUy 0+ (5.10)



238 J-J. Xu

6. Asymptotic solution for temperature field and interface shape

We now derive the asymptotic expansion solutions for the temperature field T(£, 7)
and the interface shape 7,(£). According to the inner expansion solution (5.9), we write
the following expansions:

2Us, T(E 1)

T(é,ﬂ)=T*(77)+ln[ 3Py ]+1—
n(+U,) Yo

1 1
PrlnP 1(g 77)+ Prin Pr T(éﬂ])-f-..., (61)
®=1 U, h, L 6.2)
/)73 - + r 0(€)+H 1 P (€)+W Z(g)+~--- ( .

761+ U,) 7o
In the following, we shall derive the zeroth-order expansion solutions (3,(Pr) T,(£, 7)),

where we set

8,(Pr) = 2Ue : (6.3)

nA+U,) Yo

The zeroth-order expansion solution §,(Pr) 7,(£, ») is subject to the following equation:

1 [o¥, 07, 0¥,0T, dT,0¥,
VT, = { } 6.4
TRElon € O o dy ok 9
with the boundary conditions:
the far-field condition
asyp—oo T1,—-0; 6.5
the interface condition at 7 = 1: \
Ty (&, 1) = ngh, (6.6)
o7, 2 21y
'l = — (2 +770) hy— 15 Ehg()- (6.7)
It has already been derived that
I, 9} g

'Y
= ei’io_"’ Zo0 1.4 ,

SO) =29’ Inyp—y*+1.
Therefore, we may assume that the solution 7, only depends on the variable 5, namely
T, = T,(y): while h, is just a constant. Consequently, we derive the governing equation

4 1 p—
i+ (18| Tatn) = Lsebior 69)
with the boundary conditions:
as y—->oo T1I,-0; (6.10)
at p=1:
1,(1) = 52 h,, (6.11)

To(1) = =952+ m0) ho. (6.12)
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This free boundary problem can be easily solved. The solution is as follows:

Ti(n) = 73 € {Q(n) + B, R(n), (6.13)
where 0t = "B =In0 ~n /e o

e_%ﬂg 7

= 2 [1+Ingyg y1—31E,Gnen®) (z%’ln 38
0

(6.14)
ljoo e “lnu
—= du,
2 éﬂznz u
ooe¥—77 HA .
R@=f de = 3E,Gri 7P, |
7
*;770
and hy= Hyd), H,= 2+ ° (+B,), B,= —0__:”_ (6.15)
R(1)—
© 2479

Finally, we obtain the asymptotic expansion solutions for the temperature field and the
interface shape as follows:

TE 1) = T +8(P) T+ 5 TE D+ 5 HED+., (6.16)

1
Prln Pr
1

1
7,(E) = 1 +0,(Pr) b, ot 5T P Prh (g)+mh2(g)+.... (6.17)
It should be pointed out that the solution (6.16) and (6.17) is a uniformly valid
asymptotic expansion solution in the whole region. It satisfies both the interface
condition and the far-field condition. Therefore we do not need to look for the outer
solution for the temperature field in the outer region. In order to make the outer
expansion for the temperature field, it can be shown that this outer expansion will be
T, plus some exponentially small term as Pr— oo.

From the above solutions (6.16) and (6.17), one sees that the steady-state solution
of dendrite growth with external flow can never be a similarity solution. This
conclusion has also been drawn by Ananth & Gill through a different approach.
However, if one neglects all terms of O(1/Pr1n Pr), the shape of the dendrite will be a
paraboloid of revolution, while the temperature field will be described by a similarity
type of solution, just like in the case of dendrite growth with no external flow. Thus,
when the surface tension equals zero and the Prandtl number is large, we can consider
the steady-state solution of dendritic growth with external flow as nearly a similarity
solution, which can be approximated by the similarity solution {7x(%), 5}:

T(n) = Tu(n) + 8,(Pr) T(n), (6.18)
n5(n) = 1+ 8,(Pr) hy,. (6.19)
From here, we can deduce that for a given undercooling 7., the steady solution of

dendrite growth with the inclusion of external flow is different from the classical
Ivantsov solution in two aspects:
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FiGURE 3. The variation of the function H,(53) with the parameter 7.

(i) the interface shape is changed from the paraboloid #, = 1 to the paraboloid

N, =15 =148, H(n?), (6.20)
where we have defined that s OO

2U,, : (6.21)

71+ U,) Yo

this change will affect the tip radius and the tip velocity of the dendrite;
(i) the temperature gradient at the interfae is changed from T, (1) = —3 to

Ty(np) = T (D) + T (D) (55— 1)+ 8,(Pr) Ti(1)
= —75l1 + 8, Ho(n)]; (6.22)

this change will affect the instability mechanism of the dendrite interface.
The function H(»}) is plotted in figure 3 versus 72. It is shown that as

16> 0, H(5) >3

while as 75— o0, Hy(nd) ~ —ni. It is seen that as long as 92 < 3, one always has
0.5 <|H,y| < 1. The parameter 4, is a function of the parameters U,_, 73, and Pr. In
figure 4, we show the variation of &, with Pr for two cases: (@) U, = 0.5, 42 = 0.1; (b)
U,=0.1, 52 =0.2.

Moreover, from (6.18) and (6.19) one see that the nearly similarity solution is,
actually, a modified Ivantsov solution with the correction terms proportional to the
parameter 6,, caused by the external flow. When the parameter 4, is small, the
similarity solution (6.18) and (6.19) will be close to the Ivantsov solution. This will be
the case, as the flow parameter U_ is less than unity. However, when the flow
parameter U, is large, the nearly similarity solution (6.18) and (6.19) will be far away
from the Ivantsov solution.

For a given T, the growth Péclet number Pe defined as the ratio of the tip radius
of the dendrite, /, and the thermal length, /,, can be calculated as

Pe = g g = na[1+ 6, Hy(np)P. (6.23)

For Pr=13.5and U, =0,0.4,0.8,1.2,2.0,5.0, we have calculated Pe versus |T,|. The
results are shown in figure 5. It is seen that for a fixed T, the growth Péclet number

8y =
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FIGURE 4. The variation of the parameter 8, with Pr for (a) U, = 0.1, 2 = 0.2,
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FIGURE 5. The variation of the growth parameter Pe with 7, for Pr = 13.5 and various flow
parameters U =0, 0.4, 0.8, 1.2, 2.0, 5.0.
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; while for a fixed U_, the Péclet number Pe monotonically

oo

Pe increases with U
increases with 7.

The steady dendrite growth solution derived in the present paper, just like the
Ivantsov solution, does not determine the tip velocity or explain the formation of
micro-structure, since the surface tension in the system is neglected. The selection of the
tip velocity and the formation of the pattern in dendritic growth with external flow is
a subject of great significance both theoretically and practically. The solutions to these
problems can be derived by using the same approach as we have developed in previous
studies (see Xu 1990a—c, 1991, 1993). The results of our investigation will be published
in a future paper.

7. Summary

In the present paper, we study steady dendrite growth from a melt in an external flow
with zero surface tension at the interface. By use of a matched asymptotic expansion
method, we obtain a uniformly valid asymptotic solution for the problem, as Pr—> co.
The problem has been studied by a number authors in terms of Oseen, Stokes, or
potential flow approximations (see Dash & Gill 1984; Ben Amar et a/. 1988 ; Bouisson
& Pelce 1989; Saville & Beaghton 1988; McFadden & Coriell 1986; Ananth & Gill
1989, 1991), but their solutions are not of asymptotic type. Hence, as Pr— co the
analytical form of their solutions will not match to our solution.

The problem involves the interaction of the flow field and the temperature field. As
Pr—> 0, the flow field is decoupled from the temperature field. The asymptotic
solutions of the flow field can be solved first. Then the asymptotic solutions of the
temperature field and the interface shape function are solved based on the solutions for
the flow field. In solving the flow field, however, a singularity appears at the far field.
Thus, the matched asymptotic expansion method is needed. The whole physical space
is divided into an inner region near the interface of the dendrite and an outer region
in the far field. In different regions, the solutions to the flow field have different
asymptotic expansion forms. The inner expansion solutions in the inner region can
satisfy all the boundary conditions at the interface, but cannot satisfy the flow
condition at the far field, whereas the outer expansion solutions in the outer region can
satisfy all boundary conditions at the far field, but cannot satisfy the boundary
conditions at the interface. Therefore, it is necessary to match both solutions with each
other in the intermediate region in deriving the uniformly valid asymptotic expansion
solution to the problem. Our matched asymptotic solution is derived in the limit
Pr— o0, s0 it can be applied to practical cases with any undercooling parameter 7, and
a large flow parameter. Although in figure 5 we only show numerical results in the
range of U_, up to 5, it does not imply that the applicability of our solution has this
limitation.

The conclusions drawn in the present paper are summarized as follows:

(i) With the inclusion of external flow, the system does not permit a similarity
solution even for the special case of zero surface tension. However, when Pr — co, the
steady-state solution of dendrite growth is nearly a similarity solution. It can be
approximated by the similarity solution T(5)#%y with an error or O(1/Prln Pr), as
described by (6.18) and (6.19).

(i1) If we neglect the higher-order small terms of O(1/PrIn Pr) due to the effect of
convection, the interfae shape of the dendrite is changed to a paraboloid = 5 > 1,
from the Ivantsov paraboloid 5 = 1, corresponding to the case U, = 0, while the
gradient of temperature at the interface is also changed as shown by (6.22);
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(iii) The correction terms in the nearly similarity solution caused by the external
flow are proportional to the parameter §,, which is a function of Pr,U_, T, . As
Pr—> o or U,—0, 8,->0. Therefore, when the flow parameter U, is small, the
correction terms are small. However, when the flow parameter is large (U_, > 1), the
correction terms in the nearly similarity solution may be large. Hence, our solution
may be quite different from the Ivantsov solution.

(iv) For any given T, the growth Péclet number Pe increases with the flow
parameter U,. For a fixed U_, the Péclet number Pe increases monotonically with T,,.

This research was supported by Operating Grants of The Natural Sciences and
Engineering Research Council of Canada (NSERC). Partial funding was also provided
by the Operating Grants of (FCAR). The author sincerely thanks his Research
Associate, Professor Zhong-Xiong Pan for undertaking the numerical calculations.

REFERENCES
ABRAMOVITZ, M. & STEGUN, 1. A. (ed.) 1964 Handbook of Mathematical Functions. National Bureau
of Standards.
ANANTH, R. & GIiLL, W. N. 1989 J. Fluid Mech. 208, 575.
ANANTH, R. & GiLL, W. N. 1991 J. Cryst. Growth 108, 173.
BEN AMAR, M., Bouissou, PH. & PeLCE, P. 1988 J. Cryst. Growth 92, 97.
Bouissou, PH. & PELCE, P. 1989 Phys. Rev. A 40, 6673.
CANRIGHT, D. & Davis, S. H. 1990 Applied Mathematics Tech. Rep. 8982. Northwestern University.
DasH, S. K. & GiLL, W. G. 1984 Intl J. Heat Mass Transfer 27, 1345.
Huang, S. C. & GLicksMAN, M. E. 1981 Acta Metall. 29, 701.
Ivantsov, G. P. 1947 Dokl. Nauk. SSSR 58, 567.

KEvorRkiaN, J. & Corg, J.D. 1981 Perturbation Methods in Applied Mathematics. Applied
Mathematical Sciences, Vol. 34. Springer.

MCFADDEN, G. B. & CorigLL, S. R. 1986 J. Cryst. Growth 74, 507.
SaviLLe, D. A. & BEAGHTON, P.J. 1988 Phys. Rev. A 37, 3423.
Xu, J.J. 1990a Can. J. Phys. 68, 58.

Xu, I1.J. 19905 Physica Status Solidi (b), 157, 577.

Xu, 1. J. 1990¢ J. Cryst. Growth 100, 481.

Xu, J.J. 1991 Phys. Rev. A.

Xu, J. J. 1993 Effect of convection motion in melt induced by density change on dendritic growth.
Can. J. phys. (to appear).



